Butterbur: Tesselation support for filling closed paths
[sdk] / deps / libtess / mesh.c
1 /*
2 ** License Applicability. Except to the extent portions of this file are
3 ** made subject to an alternative license as permitted in the SGI Free
4 ** Software License B, Version 1.1 (the "License"), the contents of this
5 ** file are subject only to the provisions of the License. You may not use
6 ** this file except in compliance with the License. You may obtain a copy
7 ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
8 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
9 ** 
10 ** http://oss.sgi.com/projects/FreeB
11 ** 
12 ** Note that, as provided in the License, the Software is distributed on an
13 ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
14 ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
15 ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
16 ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
17 ** 
18 ** Original Code. The Original Code is: OpenGL Sample Implementation,
19 ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
20 ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
21 ** Copyright in any portions created by third parties is as indicated
22 ** elsewhere herein. All Rights Reserved.
23 ** 
24 ** Additional Notice Provisions: The application programming interfaces
25 ** established by SGI in conjunction with the Original Code are The
26 ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
27 ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
28 ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
29 ** Window System(R) (Version 1.3), released October 19, 1998. This software
30 ** was created using the OpenGL(R) version 1.2.1 Sample Implementation
31 ** published by SGI, but has not been independently verified as being
32 ** compliant with the OpenGL(R) version 1.2.1 Specification.
33 **
34 */
35 /*
36 ** Author: Eric Veach, July 1994.
37 **
38 ** $Date: 2001/03/17 00:25:41 $ $Revision: 1.1 $
39 ** $Header: /home/krh/git/sync/mesa-cvs-repo/Mesa/src/glu/sgi/libtess/mesh.c,v 1.1 2001/03/17 00:25:41 brianp Exp $
40 */
41
42 #include "gluos.h"
43 #include <stddef.h>
44 #include <assert.h>
45 #include "mesh.h"
46 #include "memalloc.h"
47
48 #define TRUE 1
49 #define FALSE 0
50
51 static GLUvertex *allocVertex()
52 {
53    return (GLUvertex *)memAlloc( sizeof( GLUvertex ));
54 }
55
56 static GLUface *allocFace()
57 {
58    return (GLUface *)memAlloc( sizeof( GLUface ));
59 }
60
61 /************************ Utility Routines ************************/
62
63 /* Allocate and free half-edges in pairs for efficiency.
64  * The *only* place that should use this fact is allocation/free.
65  */
66 typedef struct { GLUhalfEdge e, eSym; } EdgePair;
67
68 /* MakeEdge creates a new pair of half-edges which form their own loop.
69  * No vertex or face structures are allocated, but these must be assigned
70  * before the current edge operation is completed.
71  */
72 static GLUhalfEdge *MakeEdge( GLUhalfEdge *eNext )
73 {
74   GLUhalfEdge *e;
75   GLUhalfEdge *eSym;
76   GLUhalfEdge *ePrev;
77   EdgePair *pair = (EdgePair *)memAlloc( sizeof( EdgePair ));
78   if (pair == NULL) return NULL;
79
80   e = &pair->e;
81   eSym = &pair->eSym;
82
83   /* Make sure eNext points to the first edge of the edge pair */
84   if( eNext->Sym < eNext ) { eNext = eNext->Sym; }
85
86   /* Insert in circular doubly-linked list before eNext.
87    * Note that the prev pointer is stored in Sym->next.
88    */
89   ePrev = eNext->Sym->next;
90   eSym->next = ePrev;
91   ePrev->Sym->next = e;
92   e->next = eNext;
93   eNext->Sym->next = eSym;
94
95   e->Sym = eSym;
96   e->Onext = e;
97   e->Lnext = eSym;
98   e->Org = NULL;
99   e->Lface = NULL;
100   e->winding = 0;
101   e->activeRegion = NULL;
102
103   eSym->Sym = e;
104   eSym->Onext = eSym;
105   eSym->Lnext = e;
106   eSym->Org = NULL;
107   eSym->Lface = NULL;
108   eSym->winding = 0;
109   eSym->activeRegion = NULL;
110
111   return e;
112 }
113
114 /* Splice( a, b ) is best described by the Guibas/Stolfi paper or the
115  * CS348a notes (see mesh.h).  Basically it modifies the mesh so that
116  * a->Onext and b->Onext are exchanged.  This can have various effects
117  * depending on whether a and b belong to different face or vertex rings.
118  * For more explanation see __gl_meshSplice() below.
119  */
120 static void Splice( GLUhalfEdge *a, GLUhalfEdge *b )
121 {
122   GLUhalfEdge *aOnext = a->Onext;
123   GLUhalfEdge *bOnext = b->Onext;
124
125   aOnext->Sym->Lnext = b;
126   bOnext->Sym->Lnext = a;
127   a->Onext = bOnext;
128   b->Onext = aOnext;
129 }
130
131 /* MakeVertex( newVertex, eOrig, vNext ) attaches a new vertex and makes it the
132  * origin of all edges in the vertex loop to which eOrig belongs. "vNext" gives
133  * a place to insert the new vertex in the global vertex list.  We insert
134  * the new vertex *before* vNext so that algorithms which walk the vertex
135  * list will not see the newly created vertices.
136  */
137 static void MakeVertex( GLUvertex *newVertex, 
138                         GLUhalfEdge *eOrig, GLUvertex *vNext )
139 {
140   GLUhalfEdge *e;
141   GLUvertex *vPrev;
142   GLUvertex *vNew = newVertex;
143
144   assert(vNew != NULL);
145
146   /* insert in circular doubly-linked list before vNext */
147   vPrev = vNext->prev;
148   vNew->prev = vPrev;
149   vPrev->next = vNew;
150   vNew->next = vNext;
151   vNext->prev = vNew;
152
153   vNew->anEdge = eOrig;
154   vNew->data = NULL;
155   /* leave coords, s, t undefined */
156
157   /* fix other edges on this vertex loop */
158   e = eOrig;
159   do {
160     e->Org = vNew;
161     e = e->Onext;
162   } while( e != eOrig );
163 }
164
165 /* MakeFace( newFace, eOrig, fNext ) attaches a new face and makes it the left
166  * face of all edges in the face loop to which eOrig belongs.  "fNext" gives
167  * a place to insert the new face in the global face list.  We insert
168  * the new face *before* fNext so that algorithms which walk the face
169  * list will not see the newly created faces.
170  */
171 static void MakeFace( GLUface *newFace, GLUhalfEdge *eOrig, GLUface *fNext )
172 {
173   GLUhalfEdge *e;
174   GLUface *fPrev;
175   GLUface *fNew = newFace;
176
177   assert(fNew != NULL); 
178
179   /* insert in circular doubly-linked list before fNext */
180   fPrev = fNext->prev;
181   fNew->prev = fPrev;
182   fPrev->next = fNew;
183   fNew->next = fNext;
184   fNext->prev = fNew;
185
186   fNew->anEdge = eOrig;
187   fNew->data = NULL;
188   fNew->trail = NULL;
189   fNew->marked = FALSE;
190
191   /* The new face is marked "inside" if the old one was.  This is a
192    * convenience for the common case where a face has been split in two.
193    */
194   fNew->inside = fNext->inside;
195
196   /* fix other edges on this face loop */
197   e = eOrig;
198   do {
199     e->Lface = fNew;
200     e = e->Lnext;
201   } while( e != eOrig );
202 }
203
204 /* KillEdge( eDel ) destroys an edge (the half-edges eDel and eDel->Sym),
205  * and removes from the global edge list.
206  */
207 static void KillEdge( GLUhalfEdge *eDel )
208 {
209   GLUhalfEdge *ePrev, *eNext;
210
211   /* Half-edges are allocated in pairs, see EdgePair above */
212   if( eDel->Sym < eDel ) { eDel = eDel->Sym; }
213
214   /* delete from circular doubly-linked list */
215   eNext = eDel->next;
216   ePrev = eDel->Sym->next;
217   eNext->Sym->next = ePrev;
218   ePrev->Sym->next = eNext;
219
220   memFree( eDel );
221 }
222
223
224 /* KillVertex( vDel ) destroys a vertex and removes it from the global
225  * vertex list.  It updates the vertex loop to point to a given new vertex.
226  */
227 static void KillVertex( GLUvertex *vDel, GLUvertex *newOrg )
228 {
229   GLUhalfEdge *e, *eStart = vDel->anEdge;
230   GLUvertex *vPrev, *vNext;
231
232   /* change the origin of all affected edges */
233   e = eStart;
234   do {
235     e->Org = newOrg;
236     e = e->Onext;
237   } while( e != eStart );
238
239   /* delete from circular doubly-linked list */
240   vPrev = vDel->prev;
241   vNext = vDel->next;
242   vNext->prev = vPrev;
243   vPrev->next = vNext;
244
245   memFree( vDel );
246 }
247
248 /* KillFace( fDel ) destroys a face and removes it from the global face
249  * list.  It updates the face loop to point to a given new face.
250  */
251 static void KillFace( GLUface *fDel, GLUface *newLface )
252 {
253   GLUhalfEdge *e, *eStart = fDel->anEdge;
254   GLUface *fPrev, *fNext;
255
256   /* change the left face of all affected edges */
257   e = eStart;
258   do {
259     e->Lface = newLface;
260     e = e->Lnext;
261   } while( e != eStart );
262
263   /* delete from circular doubly-linked list */
264   fPrev = fDel->prev;
265   fNext = fDel->next;
266   fNext->prev = fPrev;
267   fPrev->next = fNext;
268
269   memFree( fDel );
270 }
271
272
273 /****************** Basic Edge Operations **********************/
274
275 /* __gl_meshMakeEdge creates one edge, two vertices, and a loop (face).
276  * The loop consists of the two new half-edges.
277  */
278 GLUhalfEdge *__gl_meshMakeEdge( GLUmesh *mesh )
279 {
280   GLUvertex *newVertex1= allocVertex();
281   GLUvertex *newVertex2= allocVertex();
282   GLUface *newFace= allocFace();
283   GLUhalfEdge *e;
284
285   /* if any one is null then all get freed */
286   if (newVertex1 == NULL || newVertex2 == NULL || newFace == NULL) {
287      if (newVertex1 != NULL) memFree(newVertex1);
288      if (newVertex2 != NULL) memFree(newVertex2);
289      if (newFace != NULL) memFree(newFace);     
290      return NULL;
291   } 
292
293   e = MakeEdge( &mesh->eHead );
294   if (e == NULL) return NULL;
295
296   MakeVertex( newVertex1, e, &mesh->vHead );
297   MakeVertex( newVertex2, e->Sym, &mesh->vHead );
298   MakeFace( newFace, e, &mesh->fHead );
299   return e;
300 }
301   
302
303 /* __gl_meshSplice( eOrg, eDst ) is the basic operation for changing the
304  * mesh connectivity and topology.  It changes the mesh so that
305  *      eOrg->Onext <- OLD( eDst->Onext )
306  *      eDst->Onext <- OLD( eOrg->Onext )
307  * where OLD(...) means the value before the meshSplice operation.
308  *
309  * This can have two effects on the vertex structure:
310  *  - if eOrg->Org != eDst->Org, the two vertices are merged together
311  *  - if eOrg->Org == eDst->Org, the origin is split into two vertices
312  * In both cases, eDst->Org is changed and eOrg->Org is untouched.
313  *
314  * Similarly (and independently) for the face structure,
315  *  - if eOrg->Lface == eDst->Lface, one loop is split into two
316  *  - if eOrg->Lface != eDst->Lface, two distinct loops are joined into one
317  * In both cases, eDst->Lface is changed and eOrg->Lface is unaffected.
318  *
319  * Some special cases:
320  * If eDst == eOrg, the operation has no effect.
321  * If eDst == eOrg->Lnext, the new face will have a single edge.
322  * If eDst == eOrg->Lprev, the old face will have a single edge.
323  * If eDst == eOrg->Onext, the new vertex will have a single edge.
324  * If eDst == eOrg->Oprev, the old vertex will have a single edge.
325  */
326 int __gl_meshSplice( GLUhalfEdge *eOrg, GLUhalfEdge *eDst )
327 {
328   int joiningLoops = FALSE;
329   int joiningVertices = FALSE;
330
331   if( eOrg == eDst ) return 1;
332
333   if( eDst->Org != eOrg->Org ) {
334     /* We are merging two disjoint vertices -- destroy eDst->Org */
335     joiningVertices = TRUE;
336     KillVertex( eDst->Org, eOrg->Org );
337   }
338   if( eDst->Lface != eOrg->Lface ) {
339     /* We are connecting two disjoint loops -- destroy eDst->Lface */
340     joiningLoops = TRUE;
341     KillFace( eDst->Lface, eOrg->Lface );
342   }
343
344   /* Change the edge structure */
345   Splice( eDst, eOrg );
346
347   if( ! joiningVertices ) {
348     GLUvertex *newVertex= allocVertex();
349     if (newVertex == NULL) return 0;
350
351     /* We split one vertex into two -- the new vertex is eDst->Org.
352      * Make sure the old vertex points to a valid half-edge.
353      */
354     MakeVertex( newVertex, eDst, eOrg->Org );
355     eOrg->Org->anEdge = eOrg;
356   }
357   if( ! joiningLoops ) {
358     GLUface *newFace= allocFace();  
359     if (newFace == NULL) return 0;
360
361     /* We split one loop into two -- the new loop is eDst->Lface.
362      * Make sure the old face points to a valid half-edge.
363      */
364     MakeFace( newFace, eDst, eOrg->Lface );
365     eOrg->Lface->anEdge = eOrg;
366   }
367
368   return 1;
369 }
370
371
372 /* __gl_meshDelete( eDel ) removes the edge eDel.  There are several cases:
373  * if (eDel->Lface != eDel->Rface), we join two loops into one; the loop
374  * eDel->Lface is deleted.  Otherwise, we are splitting one loop into two;
375  * the newly created loop will contain eDel->Dst.  If the deletion of eDel
376  * would create isolated vertices, those are deleted as well.
377  *
378  * This function could be implemented as two calls to __gl_meshSplice
379  * plus a few calls to memFree, but this would allocate and delete
380  * unnecessary vertices and faces.
381  */
382 int __gl_meshDelete( GLUhalfEdge *eDel )
383 {
384   GLUhalfEdge *eDelSym = eDel->Sym;
385   int joiningLoops = FALSE;
386
387   /* First step: disconnect the origin vertex eDel->Org.  We make all
388    * changes to get a consistent mesh in this "intermediate" state.
389    */
390   if( eDel->Lface != eDel->Rface ) {
391     /* We are joining two loops into one -- remove the left face */
392     joiningLoops = TRUE;
393     KillFace( eDel->Lface, eDel->Rface );
394   }
395
396   if( eDel->Onext == eDel ) {
397     KillVertex( eDel->Org, NULL );
398   } else {
399     /* Make sure that eDel->Org and eDel->Rface point to valid half-edges */
400     eDel->Rface->anEdge = eDel->Oprev;
401     eDel->Org->anEdge = eDel->Onext;
402
403     Splice( eDel, eDel->Oprev );
404     if( ! joiningLoops ) {
405       GLUface *newFace= allocFace();
406       if (newFace == NULL) return 0; 
407
408       /* We are splitting one loop into two -- create a new loop for eDel. */
409       MakeFace( newFace, eDel, eDel->Lface );
410     }
411   }
412
413   /* Claim: the mesh is now in a consistent state, except that eDel->Org
414    * may have been deleted.  Now we disconnect eDel->Dst.
415    */
416   if( eDelSym->Onext == eDelSym ) {
417     KillVertex( eDelSym->Org, NULL );
418     KillFace( eDelSym->Lface, NULL );
419   } else {
420     /* Make sure that eDel->Dst and eDel->Lface point to valid half-edges */
421     eDel->Lface->anEdge = eDelSym->Oprev;
422     eDelSym->Org->anEdge = eDelSym->Onext;
423     Splice( eDelSym, eDelSym->Oprev );
424   }
425
426   /* Any isolated vertices or faces have already been freed. */
427   KillEdge( eDel );
428
429   return 1;
430 }
431
432
433 /******************** Other Edge Operations **********************/
434
435 /* All these routines can be implemented with the basic edge
436  * operations above.  They are provided for convenience and efficiency.
437  */
438
439
440 /* __gl_meshAddEdgeVertex( eOrg ) creates a new edge eNew such that
441  * eNew == eOrg->Lnext, and eNew->Dst is a newly created vertex.
442  * eOrg and eNew will have the same left face.
443  */
444 GLUhalfEdge *__gl_meshAddEdgeVertex( GLUhalfEdge *eOrg )
445 {
446   GLUhalfEdge *eNewSym;
447   GLUhalfEdge *eNew = MakeEdge( eOrg );
448   if (eNew == NULL) return NULL;
449
450   eNewSym = eNew->Sym;
451
452   /* Connect the new edge appropriately */
453   Splice( eNew, eOrg->Lnext );
454
455   /* Set the vertex and face information */
456   eNew->Org = eOrg->Dst;
457   {
458     GLUvertex *newVertex= allocVertex();
459     if (newVertex == NULL) return NULL;
460
461     MakeVertex( newVertex, eNewSym, eNew->Org );
462   }
463   eNew->Lface = eNewSym->Lface = eOrg->Lface;
464
465   return eNew;
466 }
467
468
469 /* __gl_meshSplitEdge( eOrg ) splits eOrg into two edges eOrg and eNew,
470  * such that eNew == eOrg->Lnext.  The new vertex is eOrg->Dst == eNew->Org.
471  * eOrg and eNew will have the same left face.
472  */
473 GLUhalfEdge *__gl_meshSplitEdge( GLUhalfEdge *eOrg )
474 {
475   GLUhalfEdge *eNew;
476   GLUhalfEdge *tempHalfEdge= __gl_meshAddEdgeVertex( eOrg );
477   if (tempHalfEdge == NULL) return NULL;
478
479   eNew = tempHalfEdge->Sym;
480
481   /* Disconnect eOrg from eOrg->Dst and connect it to eNew->Org */
482   Splice( eOrg->Sym, eOrg->Sym->Oprev );
483   Splice( eOrg->Sym, eNew );
484
485   /* Set the vertex and face information */
486   eOrg->Dst = eNew->Org;
487   eNew->Dst->anEdge = eNew->Sym;        /* may have pointed to eOrg->Sym */
488   eNew->Rface = eOrg->Rface;
489   eNew->winding = eOrg->winding;        /* copy old winding information */
490   eNew->Sym->winding = eOrg->Sym->winding;
491
492   return eNew;
493 }
494
495
496 /* __gl_meshConnect( eOrg, eDst ) creates a new edge from eOrg->Dst
497  * to eDst->Org, and returns the corresponding half-edge eNew.
498  * If eOrg->Lface == eDst->Lface, this splits one loop into two,
499  * and the newly created loop is eNew->Lface.  Otherwise, two disjoint
500  * loops are merged into one, and the loop eDst->Lface is destroyed.
501  *
502  * If (eOrg == eDst), the new face will have only two edges.
503  * If (eOrg->Lnext == eDst), the old face is reduced to a single edge.
504  * If (eOrg->Lnext->Lnext == eDst), the old face is reduced to two edges.
505  */
506 GLUhalfEdge *__gl_meshConnect( GLUhalfEdge *eOrg, GLUhalfEdge *eDst )
507 {
508   GLUhalfEdge *eNewSym;
509   int joiningLoops = FALSE;  
510   GLUhalfEdge *eNew = MakeEdge( eOrg );
511   if (eNew == NULL) return NULL;
512
513   eNewSym = eNew->Sym;
514
515   if( eDst->Lface != eOrg->Lface ) {
516     /* We are connecting two disjoint loops -- destroy eDst->Lface */
517     joiningLoops = TRUE;
518     KillFace( eDst->Lface, eOrg->Lface );
519   }
520
521   /* Connect the new edge appropriately */
522   Splice( eNew, eOrg->Lnext );
523   Splice( eNewSym, eDst );
524
525   /* Set the vertex and face information */
526   eNew->Org = eOrg->Dst;
527   eNewSym->Org = eDst->Org;
528   eNew->Lface = eNewSym->Lface = eOrg->Lface;
529
530   /* Make sure the old face points to a valid half-edge */
531   eOrg->Lface->anEdge = eNewSym;
532
533   if( ! joiningLoops ) {
534     GLUface *newFace= allocFace();
535     if (newFace == NULL) return NULL;
536
537     /* We split one loop into two -- the new loop is eNew->Lface */
538     MakeFace( newFace, eNew, eOrg->Lface );
539   }
540   return eNew;
541 }
542
543
544 /******************** Other Operations **********************/
545
546 /* __gl_meshZapFace( fZap ) destroys a face and removes it from the
547  * global face list.  All edges of fZap will have a NULL pointer as their
548  * left face.  Any edges which also have a NULL pointer as their right face
549  * are deleted entirely (along with any isolated vertices this produces).
550  * An entire mesh can be deleted by zapping its faces, one at a time,
551  * in any order.  Zapped faces cannot be used in further mesh operations!
552  */
553 void __gl_meshZapFace( GLUface *fZap )
554 {
555   GLUhalfEdge *eStart = fZap->anEdge;
556   GLUhalfEdge *e, *eNext, *eSym;
557   GLUface *fPrev, *fNext;
558
559   /* walk around face, deleting edges whose right face is also NULL */
560   eNext = eStart->Lnext;
561   do {
562     e = eNext;
563     eNext = e->Lnext;
564
565     e->Lface = NULL;
566     if( e->Rface == NULL ) {
567       /* delete the edge -- see __gl_MeshDelete above */
568
569       if( e->Onext == e ) {
570         KillVertex( e->Org, NULL );
571       } else {
572         /* Make sure that e->Org points to a valid half-edge */
573         e->Org->anEdge = e->Onext;
574         Splice( e, e->Oprev );
575       }
576       eSym = e->Sym;
577       if( eSym->Onext == eSym ) {
578         KillVertex( eSym->Org, NULL );
579       } else {
580         /* Make sure that eSym->Org points to a valid half-edge */
581         eSym->Org->anEdge = eSym->Onext;
582         Splice( eSym, eSym->Oprev );
583       }
584       KillEdge( e );
585     }
586   } while( e != eStart );
587
588   /* delete from circular doubly-linked list */
589   fPrev = fZap->prev;
590   fNext = fZap->next;
591   fNext->prev = fPrev;
592   fPrev->next = fNext;
593
594   memFree( fZap );
595 }
596
597
598 /* __gl_meshNewMesh() creates a new mesh with no edges, no vertices,
599  * and no loops (what we usually call a "face").
600  */
601 GLUmesh *__gl_meshNewMesh( void )
602 {
603   GLUvertex *v;
604   GLUface *f;
605   GLUhalfEdge *e;
606   GLUhalfEdge *eSym;
607   GLUmesh *mesh = (GLUmesh *)memAlloc( sizeof( GLUmesh ));
608   if (mesh == NULL) {
609      return NULL;
610   }
611   
612   v = &mesh->vHead;
613   f = &mesh->fHead;
614   e = &mesh->eHead;
615   eSym = &mesh->eHeadSym;
616
617   v->next = v->prev = v;
618   v->anEdge = NULL;
619   v->data = NULL;
620
621   f->next = f->prev = f;
622   f->anEdge = NULL;
623   f->data = NULL;
624   f->trail = NULL;
625   f->marked = FALSE;
626   f->inside = FALSE;
627
628   e->next = e;
629   e->Sym = eSym;
630   e->Onext = NULL;
631   e->Lnext = NULL;
632   e->Org = NULL;
633   e->Lface = NULL;
634   e->winding = 0;
635   e->activeRegion = NULL;
636
637   eSym->next = eSym;
638   eSym->Sym = e;
639   eSym->Onext = NULL;
640   eSym->Lnext = NULL;
641   eSym->Org = NULL;
642   eSym->Lface = NULL;
643   eSym->winding = 0;
644   eSym->activeRegion = NULL;
645
646   return mesh;
647 }
648
649
650 /* __gl_meshUnion( mesh1, mesh2 ) forms the union of all structures in
651  * both meshes, and returns the new mesh (the old meshes are destroyed).
652  */
653 GLUmesh *__gl_meshUnion( GLUmesh *mesh1, GLUmesh *mesh2 )
654 {
655   GLUface *f1 = &mesh1->fHead;
656   GLUvertex *v1 = &mesh1->vHead;
657   GLUhalfEdge *e1 = &mesh1->eHead;
658   GLUface *f2 = &mesh2->fHead;
659   GLUvertex *v2 = &mesh2->vHead;
660   GLUhalfEdge *e2 = &mesh2->eHead;
661
662   /* Add the faces, vertices, and edges of mesh2 to those of mesh1 */
663   if( f2->next != f2 ) {
664     f1->prev->next = f2->next;
665     f2->next->prev = f1->prev;
666     f2->prev->next = f1;
667     f1->prev = f2->prev;
668   }
669
670   if( v2->next != v2 ) {
671     v1->prev->next = v2->next;
672     v2->next->prev = v1->prev;
673     v2->prev->next = v1;
674     v1->prev = v2->prev;
675   }
676
677   if( e2->next != e2 ) {
678     e1->Sym->next->Sym->next = e2->next;
679     e2->next->Sym->next = e1->Sym->next;
680     e2->Sym->next->Sym->next = e1;
681     e1->Sym->next = e2->Sym->next;
682   }
683
684   memFree( mesh2 );
685   return mesh1;
686 }
687
688
689 #ifdef DELETE_BY_ZAPPING
690
691 /* __gl_meshDeleteMesh( mesh ) will free all storage for any valid mesh.
692  */
693 void __gl_meshDeleteMesh( GLUmesh *mesh )
694 {
695   GLUface *fHead = &mesh->fHead;
696
697   while( fHead->next != fHead ) {
698     __gl_meshZapFace( fHead->next );
699   }
700   assert( mesh->vHead.next == &mesh->vHead );
701
702   memFree( mesh );
703 }
704
705 #else
706
707 /* __gl_meshDeleteMesh( mesh ) will free all storage for any valid mesh.
708  */
709 void __gl_meshDeleteMesh( GLUmesh *mesh )
710 {
711   GLUface *f, *fNext;
712   GLUvertex *v, *vNext;
713   GLUhalfEdge *e, *eNext;
714
715   for( f = mesh->fHead.next; f != &mesh->fHead; f = fNext ) {
716     fNext = f->next;
717     memFree( f );
718   }
719
720   for( v = mesh->vHead.next; v != &mesh->vHead; v = vNext ) {
721     vNext = v->next;
722     memFree( v );
723   }
724
725   for( e = mesh->eHead.next; e != &mesh->eHead; e = eNext ) {
726     /* One call frees both e and e->Sym (see EdgePair above) */
727     eNext = e->next;
728     memFree( e );
729   }
730
731   memFree( mesh );
732 }
733
734 #endif
735
736 #ifndef NDEBUG
737
738 /* __gl_meshCheckMesh( mesh ) checks a mesh for self-consistency.
739  */
740 void __gl_meshCheckMesh( GLUmesh *mesh )
741 {
742   GLUface *fHead = &mesh->fHead;
743   GLUvertex *vHead = &mesh->vHead;
744   GLUhalfEdge *eHead = &mesh->eHead;
745   GLUface *f, *fPrev;
746   GLUvertex *v, *vPrev;
747   GLUhalfEdge *e, *ePrev;
748
749   fPrev = fHead;
750   for( fPrev = fHead ; (f = fPrev->next) != fHead; fPrev = f) {
751     assert( f->prev == fPrev );
752     e = f->anEdge;
753     do {
754       assert( e->Sym != e );
755       assert( e->Sym->Sym == e );
756       assert( e->Lnext->Onext->Sym == e );
757       assert( e->Onext->Sym->Lnext == e );
758       assert( e->Lface == f );
759       e = e->Lnext;
760     } while( e != f->anEdge );
761   }
762   assert( f->prev == fPrev && f->anEdge == NULL && f->data == NULL );
763
764   vPrev = vHead;
765   for( vPrev = vHead ; (v = vPrev->next) != vHead; vPrev = v) {
766     assert( v->prev == vPrev );
767     e = v->anEdge;
768     do {
769       assert( e->Sym != e );
770       assert( e->Sym->Sym == e );
771       assert( e->Lnext->Onext->Sym == e );
772       assert( e->Onext->Sym->Lnext == e );
773       assert( e->Org == v );
774       e = e->Onext;
775     } while( e != v->anEdge );
776   }
777   assert( v->prev == vPrev && v->anEdge == NULL && v->data == NULL );
778
779   ePrev = eHead;
780   for( ePrev = eHead ; (e = ePrev->next) != eHead; ePrev = e) {
781     assert( e->Sym->next == ePrev->Sym );
782     assert( e->Sym != e );
783     assert( e->Sym->Sym == e );
784     assert( e->Org != NULL );
785     assert( e->Dst != NULL );
786     assert( e->Lnext->Onext->Sym == e );
787     assert( e->Onext->Sym->Lnext == e );
788   }
789   assert( e->Sym->next == ePrev->Sym
790        && e->Sym == &mesh->eHeadSym
791        && e->Sym->Sym == e
792        && e->Org == NULL && e->Dst == NULL
793        && e->Lface == NULL && e->Rface == NULL );
794 }
795
796 #endif