From: Jerome St-Louis Date: Fri, 22 May 2015 20:50:42 +0000 (-0400) Subject: extras/md5: Replacing RSA implementation with public domain code X-Git-Tag: 0.44.12~9 X-Git-Url: https://ecere.com/cgi-bin/gitweb.cgi?p=sdk;a=commitdiff_plain;h=bbd2812cfcf6e3a50e6720183a94ad0135ae7d8b extras/md5: Replacing RSA implementation with public domain code --- diff --git a/extras/md5.ec b/extras/md5.ec index baf1e90..dc00426 100644 --- a/extras/md5.ec +++ b/extras/md5.ec @@ -1,272 +1,284 @@ /* -md5.ec - RSA Data Security, Inc., MD5 message-digest algorithm + * md5.ec -- An eC adaptation of Alexander Peslyak public domain MD5 implementation + * -------------------------------------------------------------------------------- + * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc. + * MD5 Message-Digest Algorithm (RFC 1321). + * + * Homepage: + * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5 + * + * Author: + * Alexander Peslyak, better known as Solar Designer + * + * This software was written by Alexander Peslyak in 2001. No copyright is + * claimed, and the software is hereby placed in the public domain. + * In case this attempt to disclaim copyright and place the software in the + * public domain is deemed null and void, then the software is + * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the + * general public under the following terms: + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted. + * + * There's ABSOLUTELY NO WARRANTY, express or implied. + * + * (This is a heavily cut-down "BSD license".) + * + * This differs from Colin Plumb's older public domain implementation in that + * no exactly 32-bit integer data type is required (any 32-bit or wider + * unsigned integer data type will do), there's no compile-time endianness + * configuration, and the function prototypes match OpenSSL's. No code from + * Colin Plumb's implementation has been reused; this comment merely compares + * the properties of the two independent implementations. + * + * The primary goals of this implementation are portability and ease of use. + * It is meant to be fast, but not as fast as possible. Some known + * optimizations are not included to reduce source code size and avoid + * compile-time configuration. + */ -Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved. - -License to copy and use this software is granted provided that it -is identified as the "RSA Data Security, Inc. MD5 Message-Digest -Algorithm" in all material mentioning or referencing this software -or this function. - -License is also granted to make and use derivative works provided -that such works are identified as "derived from the RSA Data -Security, Inc. MD5 Message-Digest Algorithm" in all material -mentioning or referencing the derived work. - -RSA Data Security, Inc. makes no representations concerning either -the merchantability of this software or the suitability of this -software for any particular purpose. It is provided "as is" -without express or implied warranty of any kind. - -These notices must be retained in any copies of any part of this -documentation and/or software. -*/ - -// MD5 context. struct MD5_CTX { - uint32 state[4]; // state (ABCD) - uint32 count[2]; // number of bits, modulo 2^64 (lsb first) - byte buffer[64]; // input buffer -}; - -// Constants for MD5Transform routine. + uint32 lo, hi; + uint32 a, b, c, d; + byte buffer[64]; + uint32 block[16]; +} MD5_CTX; -#define S11 7 -#define S12 12 -#define S13 17 -#define S14 22 -#define S21 5 -#define S22 9 -#define S23 14 -#define S24 20 -#define S31 4 -#define S32 11 -#define S33 16 -#define S34 23 -#define S41 6 -#define S42 10 -#define S43 15 -#define S44 21 - -static byte PADDING[64] = -{ - 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 -}; - -// F, G, H and I are basic MD5 functions. -#define F(x, y, z) (((x) & (y)) | ((~x) & (z))) -#define G(x, y, z) (((x) & (z)) | ((y) & (~z))) -#define H(x, y, z) ((x) ^ (y) ^ (z)) -#define I(x, y, z) ((y) ^ ((x) | (~z))) +/* + * The basic MD5 functions. + * + * F and G are optimized compared to their RFC 1321 definitions for + * architectures that lack an AND-NOT instruction, just like in Colin Plumb's + * implementation. + */ +#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) +#define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y)))) +#define H(x, y, z) (((x) ^ (y)) ^ (z)) +#define H2(x, y, z) ((x) ^ ((y) ^ (z))) +#define I(x, y, z) ((y) ^ ((x) | ~(z))) -// ROTATE_LEFT rotates x left n bits. -#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n)))) +/* + * The MD5 transformation for all four rounds. + */ +#define STEP(f, a, b, c, d, x, t, s) \ + (a) += f((b), (c), (d)) + (x) + (t); \ + (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \ + (a) += (b); -// FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4. Rotation is separate from addition to prevent recomputation. -#define FF(a, b, c, d, x, s, ac) { \ - (a) += F ((b), (c), (d)) + (x) + (uint32)(ac); \ - (a) = ROTATE_LEFT ((a), (s)); \ - (a) += (b); \ - } -#define GG(a, b, c, d, x, s, ac) { \ - (a) += G ((b), (c), (d)) + (x) + (uint32)(ac); \ - (a) = ROTATE_LEFT ((a), (s)); \ - (a) += (b); \ - } -#define HH(a, b, c, d, x, s, ac) { \ - (a) += H ((b), (c), (d)) + (x) + (uint32)(ac); \ - (a) = ROTATE_LEFT ((a), (s)); \ - (a) += (b); \ - } -#define II(a, b, c, d, x, s, ac) { \ - (a) += I ((b), (c), (d)) + (x) + (uint32)(ac); \ - (a) = ROTATE_LEFT ((a), (s)); \ - (a) += (b); \ - } +/* + * SET reads 4 input bytes in little-endian byte order and stores them + * in a properly aligned word in host byte order. + * + * The check for little-endian architectures that tolerate unaligned + * memory accesses is just an optimization. Nothing will break if it + * doesn't work. + */ +#if defined(__i386__) || defined(__x86_64__) || defined(__vax__) +# define SET(n) (*(uint32 *)&ptr[(n) * 4]) +# define GET(n) SET(n) +#else +# define SET(n) \ + (ctx.block[(n)] = \ + (uint32)ptr[(n) * 4] | \ + ((uint32)ptr[(n) * 4 + 1] << 8) | \ + ((uint32)ptr[(n) * 4 + 2] << 16) | \ + ((uint32)ptr[(n) * 4 + 3] << 24)) +# define GET(n) (ctx.block[(n)]) +#endif -// MD5 initialization. Begins an MD5 operation, writing a new context. -void MD5Init(MD5_CTX context) +/* + * This processes one or more 64-byte data blocks, but does NOT update + * the bit counters. There are no alignment requirements. + */ +static const void *body(MD5_CTX ctx, const void *data, uint size) { - context.count[0] = context.count[1] = 0; - - // Load magic initialization constants. - context.state[0] = 0x67452301; - context.state[1] = 0xefcdab89; - context.state[2] = 0x98badcfe; - context.state[3] = 0x10325476; + const byte *ptr = (const byte *)data; + uint32 a = ctx.a, b = ctx.b, c = ctx.c, d = ctx.d; + do + { + uint32 saved_a = a, saved_b = b, saved_c = c, saved_d = d; + + // Round 1 + STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7) + STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12) + STEP(F, c, d, a, b, SET(2), 0x242070db, 17) + STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22) + STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7) + STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12) + STEP(F, c, d, a, b, SET(6), 0xa8304613, 17) + STEP(F, b, c, d, a, SET(7), 0xfd469501, 22) + STEP(F, a, b, c, d, SET(8), 0x698098d8, 7) + STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12) + STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17) + STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22) + STEP(F, a, b, c, d, SET(12), 0x6b901122, 7) + STEP(F, d, a, b, c, SET(13), 0xfd987193, 12) + STEP(F, c, d, a, b, SET(14), 0xa679438e, 17) + STEP(F, b, c, d, a, SET(15), 0x49b40821, 22) + + // Round 2 + STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5) + STEP(G, d, a, b, c, GET(6), 0xc040b340, 9) + STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14) + STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20) + STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5) + STEP(G, d, a, b, c, GET(10), 0x02441453, 9) + STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14) + STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20) + STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5) + STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9) + STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14) + STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20) + STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5) + STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9) + STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14) + STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20) + + // Round 3 + STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4) + STEP(H2, d, a, b, c, GET(8), 0x8771f681, 11) + STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16) + STEP(H2, b, c, d, a, GET(14), 0xfde5380c, 23) + STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4) + STEP(H2, d, a, b, c, GET(4), 0x4bdecfa9, 11) + STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16) + STEP(H2, b, c, d, a, GET(10), 0xbebfbc70, 23) + STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4) + STEP(H2, d, a, b, c, GET(0), 0xeaa127fa, 11) + STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16) + STEP(H2, b, c, d, a, GET(6), 0x04881d05, 23) + STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4) + STEP(H2, d, a, b, c, GET(12), 0xe6db99e5, 11) + STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16) + STEP(H2, b, c, d, a, GET(2), 0xc4ac5665, 23) + + // Round 4 + STEP(I, a, b, c, d, GET(0), 0xf4292244, 6) + STEP(I, d, a, b, c, GET(7), 0x432aff97, 10) + STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15) + STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21) + STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6) + STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10) + STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15) + STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21) + STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6) + STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10) + STEP(I, c, d, a, b, GET(6), 0xa3014314, 15) + STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21) + STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6) + STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10) + STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15) + STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21) + + a += saved_a; + b += saved_b; + c += saved_c; + d += saved_d; + + ptr += 64; + } while (size -= 64); + + ctx.a = a; + ctx.b = b; + ctx.c = c; + ctx.d = d; + + return ptr; } -// MD5 block update operation. Continues an MD5 message-digest operation, processing another message block, and updating the context. -void MD5Update(MD5_CTX context, byte *input, uint inputLen) +void MD5Init(MD5_CTX ctx) { - uint i, index, partLen; - - // Compute number of bytes mod 64 - index = (uint)((context.count[0] >> 3) & 0x3F); - - // Update number of bits - if ((context.count[0] += ((uint32)inputLen << 3)) < ((uint32)inputLen << 3)) - context.count[1]++; - context.count[1] += ((uint32)inputLen >> 29); - - partLen = 64 - index; - - // Transform as many times as possible. - if (inputLen >= partLen) + ctx = { - memcpy((byte *)&context.buffer[index], (byte *)input, partLen); - MD5Transform (context.state, context.buffer); - - for (i = partLen; i + 63 < inputLen; i += 64) - MD5Transform (context.state, &input[i]); - - index = 0; - } - else - i = 0; - - // Buffer remaining input - memcpy((byte *)&context.buffer[index], (byte *)&input[i], - inputLen-i); + a = 0x67452301; + b = 0xefcdab89; + c = 0x98badcfe; + d = 0x10325476; + }; } -// MD5 finalization. Ends an MD5 message-digest operation, writing the the message digest and zeroizing the context. -void MD5Final(byte digest[16], MD5_CTX context) +void MD5Update(MD5_CTX ctx, const byte *data, uint size) { - byte bits[8]; - uint index, padLen; - - // Save number of bits - Encode (bits, context.count, 8); + uint32 saved_lo = ctx.lo; + uint used = saved_lo & 0x3f; - // Pad out to 56 mod 64. + if((ctx.lo = (saved_lo + size) & 0x1fffffff) < saved_lo) + ctx.hi++; + ctx.hi += size >> 29; - index = (uint)((context.count[0] >> 3) & 0x3f); - padLen = (index < 56) ? (56 - index) : (120 - index); - MD5Update (context, PADDING, padLen); - - // Append length (before padding) - MD5Update (context, bits, 8); + if(used) + { + uint available = 64 - used; + + if(size < available) + { + memcpy(&ctx.buffer[used], data, size); + return; + } + + memcpy(&ctx.buffer[used], data, available); + data = (const byte *)data + available; + size -= available; + body(ctx, ctx.buffer, 64); + } - // Store state in digest - Encode (digest, context.state, 16); + if(size >= 64) + { + data = body(ctx, data, size & ~(uint)0x3f); + size &= 0x3f; + } - // Zeroize sensitive information. - memset ((byte *)context, 0, sizeof(MD5_CTX)); + memcpy(ctx.buffer, data, size); } -// MD5 basic transformation. Transforms state based on block. -static void MD5Transform(uint32 state[4], byte block[64]) +void MD5Final(byte *result, MD5_CTX ctx) { - uint32 a = state[0], b = state[1], c = state[2], d = state[3], x[16]; - - Decode (x, block, 64); - - // Round 1 - FF (a, b, c, d, x[ 0], S11, 0xd76aa478); // 1 - FF (d, a, b, c, x[ 1], S12, 0xe8c7b756); // 2 - FF (c, d, a, b, x[ 2], S13, 0x242070db); // 3 - FF (b, c, d, a, x[ 3], S14, 0xc1bdceee); // 4 - FF (a, b, c, d, x[ 4], S11, 0xf57c0faf); // 5 - FF (d, a, b, c, x[ 5], S12, 0x4787c62a); // 6 - FF (c, d, a, b, x[ 6], S13, 0xa8304613); // 7 - FF (b, c, d, a, x[ 7], S14, 0xfd469501); // 8 - FF (a, b, c, d, x[ 8], S11, 0x698098d8); // 9 - FF (d, a, b, c, x[ 9], S12, 0x8b44f7af); // 10 - FF (c, d, a, b, x[10], S13, 0xffff5bb1); // 11 - FF (b, c, d, a, x[11], S14, 0x895cd7be); // 12 - FF (a, b, c, d, x[12], S11, 0x6b901122); // 13 - FF (d, a, b, c, x[13], S12, 0xfd987193); // 14 - FF (c, d, a, b, x[14], S13, 0xa679438e); // 15 - FF (b, c, d, a, x[15], S14, 0x49b40821); // 16 + uint used = ctx.lo & 0x3f; + uint available = 64 - used; - // Round 2 - GG (a, b, c, d, x[ 1], S21, 0xf61e2562); // 17 - GG (d, a, b, c, x[ 6], S22, 0xc040b340); // 18 - GG (c, d, a, b, x[11], S23, 0x265e5a51); // 19 - GG (b, c, d, a, x[ 0], S24, 0xe9b6c7aa); // 20 - GG (a, b, c, d, x[ 5], S21, 0xd62f105d); // 21 - GG (d, a, b, c, x[10], S22, 0x2441453); // 22 - GG (c, d, a, b, x[15], S23, 0xd8a1e681); // 23 - GG (b, c, d, a, x[ 4], S24, 0xe7d3fbc8); // 24 - GG (a, b, c, d, x[ 9], S21, 0x21e1cde6); // 25 - GG (d, a, b, c, x[14], S22, 0xc33707d6); // 26 - GG (c, d, a, b, x[ 3], S23, 0xf4d50d87); // 27 - GG (b, c, d, a, x[ 8], S24, 0x455a14ed); // 28 - GG (a, b, c, d, x[13], S21, 0xa9e3e905); // 29 - GG (d, a, b, c, x[ 2], S22, 0xfcefa3f8); // 30 - GG (c, d, a, b, x[ 7], S23, 0x676f02d9); // 31 - GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); // 32 + ctx.buffer[used++] = 0x80; - // Round 3 - HH (a, b, c, d, x[ 5], S31, 0xfffa3942); // 33 - HH (d, a, b, c, x[ 8], S32, 0x8771f681); // 34 - HH (c, d, a, b, x[11], S33, 0x6d9d6122); // 35 - HH (b, c, d, a, x[14], S34, 0xfde5380c); // 36 - HH (a, b, c, d, x[ 1], S31, 0xa4beea44); // 37 - HH (d, a, b, c, x[ 4], S32, 0x4bdecfa9); // 38 - HH (c, d, a, b, x[ 7], S33, 0xf6bb4b60); // 39 - HH (b, c, d, a, x[10], S34, 0xbebfbc70); // 40 - HH (a, b, c, d, x[13], S31, 0x289b7ec6); // 41 - HH (d, a, b, c, x[ 0], S32, 0xeaa127fa); // 42 - HH (c, d, a, b, x[ 3], S33, 0xd4ef3085); // 43 - HH (b, c, d, a, x[ 6], S34, 0x4881d05); // 44 - HH (a, b, c, d, x[ 9], S31, 0xd9d4d039); // 45 - HH (d, a, b, c, x[12], S32, 0xe6db99e5); // 46 - HH (c, d, a, b, x[15], S33, 0x1fa27cf8); // 47 - HH (b, c, d, a, x[ 2], S34, 0xc4ac5665); // 48 - - // Round 4 - II (a, b, c, d, x[ 0], S41, 0xf4292244); // 49 - II (d, a, b, c, x[ 7], S42, 0x432aff97); // 50 - II (c, d, a, b, x[14], S43, 0xab9423a7); // 51 - II (b, c, d, a, x[ 5], S44, 0xfc93a039); // 52 - II (a, b, c, d, x[12], S41, 0x655b59c3); // 53 - II (d, a, b, c, x[ 3], S42, 0x8f0ccc92); // 54 - II (c, d, a, b, x[10], S43, 0xffeff47d); // 55 - II (b, c, d, a, x[ 1], S44, 0x85845dd1); // 56 - II (a, b, c, d, x[ 8], S41, 0x6fa87e4f); // 57 - II (d, a, b, c, x[15], S42, 0xfe2ce6e0); // 58 - II (c, d, a, b, x[ 6], S43, 0xa3014314); // 59 - II (b, c, d, a, x[13], S44, 0x4e0811a1); // 60 - II (a, b, c, d, x[ 4], S41, 0xf7537e82); // 61 - II (d, a, b, c, x[11], S42, 0xbd3af235); // 62 - II (c, d, a, b, x[ 2], S43, 0x2ad7d2bb); // 63 - II (b, c, d, a, x[ 9], S44, 0xeb86d391); // 64 - - state[0] += a; - state[1] += b; - state[2] += c; - state[3] += d; - - // Zeroize sensitive information. - memset ((byte *)x, 0, sizeof (x)); -} - -// Encodes input (uint32) into output (byte). Assumes len is a multiple of 4. -static void Encode(byte *output, uint32 *input, uint len) -{ - uint i, j; - - for (i = 0, j = 0; j < len; i++, j += 4) + if(available < 8) { - output[j] = (byte)(input[i] & 0xff); - output[j+1] = (byte)((input[i] >> 8) & 0xff); - output[j+2] = (byte)((input[i] >> 16) & 0xff); - output[j+3] = (byte)((input[i] >> 24) & 0xff); + memset(&ctx.buffer[used], 0, available); + body(ctx, ctx.buffer, 64); + used = 0; + available = 64; } -} - -// Decodes input (byte) into output (uint32). Assumes len is a multiple of 4. -static void Decode(uint32 *output, byte *input, uint len) -{ - uint i, j; - for (i = 0, j = 0; j < len; i++, j += 4) - output[i] = ((uint32)input[j]) | (((uint32)input[j+1]) << 8) | (((uint32)input[j+2]) << 16) | (((uint32)input[j+3]) << 24); + memset(&ctx.buffer[used], 0, available - 8); + + ctx.lo <<= 3; + ctx.buffer[56] = (byte)ctx.lo; + ctx.buffer[57] = ctx.lo >> 8; + ctx.buffer[58] = ctx.lo >> 16; + ctx.buffer[59] = ctx.lo >> 24; + ctx.buffer[60] = (byte)ctx.hi; + ctx.buffer[61] = ctx.hi >> 8; + ctx.buffer[62] = ctx.hi >> 16; + ctx.buffer[63] = ctx.hi >> 24; + + body(ctx, ctx.buffer, 64); + + result[0] = (byte)ctx.a; + result[1] = ctx.a >> 8; + result[2] = ctx.a >> 16; + result[3] = ctx.a >> 24; + result[4] = (byte)ctx.b; + result[5] = ctx.b >> 8; + result[6] = ctx.b >> 16; + result[7] = ctx.b >> 24; + result[8] = (byte)ctx.c; + result[9] = ctx.c >> 8; + result[10] = ctx.c >> 16; + result[11] = ctx.c >> 24; + result[12] = (byte)ctx.d; + result[13] = ctx.d >> 8; + result[14] = ctx.d >> 16; + result[15] = ctx.d >> 24; + + memset(ctx, 0, sizeof(MD5_CTX)); } void MD5Digest(const char * string, int len, char * output)