/* * md5.ec -- An eC adaptation of Alexander Peslyak public domain MD5 implementation * -------------------------------------------------------------------------------- * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc. * MD5 Message-Digest Algorithm (RFC 1321). * * Homepage: * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5 * * Author: * Alexander Peslyak, better known as Solar Designer * * This software was written by Alexander Peslyak in 2001. No copyright is * claimed, and the software is hereby placed in the public domain. * In case this attempt to disclaim copyright and place the software in the * public domain is deemed null and void, then the software is * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the * general public under the following terms: * * Redistribution and use in source and binary forms, with or without * modification, are permitted. * * There's ABSOLUTELY NO WARRANTY, express or implied. * * (This is a heavily cut-down "BSD license".) * * This differs from Colin Plumb's older public domain implementation in that * no exactly 32-bit integer data type is required (any 32-bit or wider * unsigned integer data type will do), there's no compile-time endianness * configuration, and the function prototypes match OpenSSL's. No code from * Colin Plumb's implementation has been reused; this comment merely compares * the properties of the two independent implementations. * * The primary goals of this implementation are portability and ease of use. * It is meant to be fast, but not as fast as possible. Some known * optimizations are not included to reduce source code size and avoid * compile-time configuration. */ struct MD5_CTX { uint32 lo, hi; uint32 a, b, c, d; byte buffer[64]; uint32 block[16]; } MD5_CTX; /* * The basic MD5 functions. * * F and G are optimized compared to their RFC 1321 definitions for * architectures that lack an AND-NOT instruction, just like in Colin Plumb's * implementation. */ #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) #define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y)))) #define H(x, y, z) (((x) ^ (y)) ^ (z)) #define H2(x, y, z) ((x) ^ ((y) ^ (z))) #define I(x, y, z) ((y) ^ ((x) | ~(z))) /* * The MD5 transformation for all four rounds. */ #define STEP(f, a, b, c, d, x, t, s) \ (a) += f((b), (c), (d)) + (x) + (t); \ (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \ (a) += (b); /* * SET reads 4 input bytes in little-endian byte order and stores them * in a properly aligned word in host byte order. * * The check for little-endian architectures that tolerate unaligned * memory accesses is just an optimization. Nothing will break if it * doesn't work. */ #if defined(__i386__) || defined(__x86_64__) || defined(__vax__) # define SET(n) (*(uint32 *)&ptr[(n) * 4]) # define GET(n) SET(n) #else # define SET(n) \ (ctx.block[(n)] = \ (uint32)ptr[(n) * 4] | \ ((uint32)ptr[(n) * 4 + 1] << 8) | \ ((uint32)ptr[(n) * 4 + 2] << 16) | \ ((uint32)ptr[(n) * 4 + 3] << 24)) # define GET(n) (ctx.block[(n)]) #endif /* * This processes one or more 64-byte data blocks, but does NOT update * the bit counters. There are no alignment requirements. */ static const void *body(MD5_CTX ctx, const void *data, uint size) { const byte *ptr = (const byte *)data; uint32 a = ctx.a, b = ctx.b, c = ctx.c, d = ctx.d; do { uint32 saved_a = a, saved_b = b, saved_c = c, saved_d = d; // Round 1 STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7) STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12) STEP(F, c, d, a, b, SET(2), 0x242070db, 17) STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22) STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7) STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12) STEP(F, c, d, a, b, SET(6), 0xa8304613, 17) STEP(F, b, c, d, a, SET(7), 0xfd469501, 22) STEP(F, a, b, c, d, SET(8), 0x698098d8, 7) STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12) STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17) STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22) STEP(F, a, b, c, d, SET(12), 0x6b901122, 7) STEP(F, d, a, b, c, SET(13), 0xfd987193, 12) STEP(F, c, d, a, b, SET(14), 0xa679438e, 17) STEP(F, b, c, d, a, SET(15), 0x49b40821, 22) // Round 2 STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5) STEP(G, d, a, b, c, GET(6), 0xc040b340, 9) STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14) STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20) STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5) STEP(G, d, a, b, c, GET(10), 0x02441453, 9) STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14) STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20) STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5) STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9) STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14) STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20) STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5) STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9) STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14) STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20) // Round 3 STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4) STEP(H2, d, a, b, c, GET(8), 0x8771f681, 11) STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16) STEP(H2, b, c, d, a, GET(14), 0xfde5380c, 23) STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4) STEP(H2, d, a, b, c, GET(4), 0x4bdecfa9, 11) STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16) STEP(H2, b, c, d, a, GET(10), 0xbebfbc70, 23) STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4) STEP(H2, d, a, b, c, GET(0), 0xeaa127fa, 11) STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16) STEP(H2, b, c, d, a, GET(6), 0x04881d05, 23) STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4) STEP(H2, d, a, b, c, GET(12), 0xe6db99e5, 11) STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16) STEP(H2, b, c, d, a, GET(2), 0xc4ac5665, 23) // Round 4 STEP(I, a, b, c, d, GET(0), 0xf4292244, 6) STEP(I, d, a, b, c, GET(7), 0x432aff97, 10) STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15) STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21) STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6) STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10) STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15) STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21) STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6) STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10) STEP(I, c, d, a, b, GET(6), 0xa3014314, 15) STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21) STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6) STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10) STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15) STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21) a += saved_a; b += saved_b; c += saved_c; d += saved_d; ptr += 64; } while (size -= 64); ctx.a = a; ctx.b = b; ctx.c = c; ctx.d = d; return ptr; } void MD5Init(MD5_CTX ctx) { ctx = { a = 0x67452301; b = 0xefcdab89; c = 0x98badcfe; d = 0x10325476; }; } void MD5Update(MD5_CTX ctx, const byte *data, uint size) { uint32 saved_lo = ctx.lo; uint used = saved_lo & 0x3f; if((ctx.lo = (saved_lo + size) & 0x1fffffff) < saved_lo) ctx.hi++; ctx.hi += size >> 29; if(used) { uint available = 64 - used; if(size < available) { memcpy(&ctx.buffer[used], data, size); return; } memcpy(&ctx.buffer[used], data, available); data = (const byte *)data + available; size -= available; body(ctx, ctx.buffer, 64); } if(size >= 64) { data = body(ctx, data, size & ~(uint)0x3f); size &= 0x3f; } memcpy(ctx.buffer, data, size); } void MD5Final(byte *result, MD5_CTX ctx) { uint used = ctx.lo & 0x3f; uint available = 64 - used; ctx.buffer[used++] = 0x80; if(available < 8) { memset(&ctx.buffer[used], 0, available); body(ctx, ctx.buffer, 64); used = 0; available = 64; } memset(&ctx.buffer[used], 0, available - 8); ctx.lo <<= 3; ctx.buffer[56] = (byte)ctx.lo; ctx.buffer[57] = ctx.lo >> 8; ctx.buffer[58] = ctx.lo >> 16; ctx.buffer[59] = ctx.lo >> 24; ctx.buffer[60] = (byte)ctx.hi; ctx.buffer[61] = ctx.hi >> 8; ctx.buffer[62] = ctx.hi >> 16; ctx.buffer[63] = ctx.hi >> 24; body(ctx, ctx.buffer, 64); result[0] = (byte)ctx.a; result[1] = ctx.a >> 8; result[2] = ctx.a >> 16; result[3] = ctx.a >> 24; result[4] = (byte)ctx.b; result[5] = ctx.b >> 8; result[6] = ctx.b >> 16; result[7] = ctx.b >> 24; result[8] = (byte)ctx.c; result[9] = ctx.c >> 8; result[10] = ctx.c >> 16; result[11] = ctx.c >> 24; result[12] = (byte)ctx.d; result[13] = ctx.d >> 8; result[14] = ctx.d >> 16; result[15] = ctx.d >> 24; memset(ctx, 0, sizeof(MD5_CTX)); } void MD5Digest(const char * string, int len, char * output) { byte bytes[16]; int c; MD5_CTX ctx; MD5Init(&ctx); MD5Update(&ctx, (byte *)string, len); MD5Final(bytes, &ctx); len = 0; for(c = 0; c<16; c++) { sprintf(output + len, "%02x", bytes[c]); len += 2; } } void MD5Digest64(const char * string, int len, uint64 * output) { byte bytes[16]; MD5_CTX ctx; MD5Init(&ctx); MD5Update(&ctx, (byte *)string, len); MD5Final(bytes, &ctx); output[0] = ((uint64)bytes[ 0] << 56) | ((uint64)bytes[ 1] << 48) | ((uint64)bytes[ 2] << 40) | ((uint64)bytes[ 3] << 32) | ((uint64)bytes[ 4] << 24) | ((uint64)bytes[ 5] << 16) | ((uint64)bytes[ 6] << 8) | ((uint64)bytes[ 7] ); output[1] = ((uint64)bytes[ 8] << 56) | ((uint64)bytes[ 9] << 48) | ((uint64)bytes[10] << 40) | ((uint64)bytes[11] << 32) | ((uint64)bytes[12] << 24) | ((uint64)bytes[13] << 16) | ((uint64)bytes[14] << 8) | ((uint64)bytes[15] ); }